Extracellular cysteine/cystine redox potential controls lung fibroblast proliferation and matrix expression through upregulation of transforming growth factor-beta.
نویسندگان
چکیده
Oxidant stress has been implicated in the pathogenesis of chronic lung disorders like idiopathic pulmonary fibrosis. However, mechanisms that link oxidant stress to fibrogenesis remain partially elucidated. Emerging data suggest an important role for the extracellular thiol/disulfide redox environment. The cysteine (Cys)/cystine (CySS) redox couple represents the predominant low-molecular-weight thiol/disulfide pool found in plasma and is sensitive to aging, smoking, and other host factors. We hypothesized that an oxidized extracellular Cys/CySS redox potential (E(h) Cys/CySS) affects lung fibroblasts by inducing intracellular signals that stimulate proliferation and matrix expression. We tested this hypothesis in primary murine lung fibroblasts and found that an oxidized E(h) Cys/CySS (-46 mV) stimulated lung fibroblast proliferation. Furthermore, it stimulated their expression of fibronectin, a matrix glycoprotein highly expressed in fibrotic lung diseases and implicated in lung injury. This stimulatory effect was dependent on protein kinase C activation. Oxidant stress also increased the phosphorylation of cAMP response element binding protein, a transcription factor known for its ability to stimulate fibronectin expression, and increased the expression of mRNAs and proteins coding for the transcription factors nuclear factor (NF)-kappaB and mothers against decapentaplegic homolog 3. Fibroblasts cultured in normal (-80 mV) or reduced (-131 mV) E(h) Cys/CySS showed less induction. Furthermore, fibronectin expression in response to an oxidized E(h) Cys/CySS was associated with expression of transforming growth factor-beta1 (TGF-beta1) and was inhibited by an anti-TGF-beta1 antibody and SB-431542, a TGF-beta1 receptor inhibitor. These studies suggest that extracellular oxidant stress activates redox-sensitive pathways that stimulate lung fibroblast proliferation and matrix expression through upregulation of TGF-beta1.
منابع مشابه
Extracellular cysteine/cystine redox potential controls lung fibroblast proliferation and matrix expression through upregulation of transforming growth factor-
Ramirez A, Ramadan B, Ritzenthaler JD, Rivera HN, Jones DP, Roman J. Extracellular cysteine/cystine redox potential controls lung fibroblast proliferation and matrix expression through upregulation of transforming growth factor. Am J Physiol Lung Cell Mol Physiol 293: L972–L981, 2007. First published July 20, 2007; doi:10.1152/ajplung.00010.2007.—Oxidant stress has been implicated in the pathog...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملRecombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells
Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...
متن کاملConnective tissue growth factor expression and induction by transforming growth factor-beta is abrogated by simvastatin via a Rho signaling mechanism.
Connective tissue growth factor (CTGF), a potent profibrotic mediator, acts downstream and in concert with transforming growth factor (TGF)-beta to drive fibrogenesis. Significant upregulation of CTGF has been reported in fibrogenic diseases, including idiopathic pulmonary fibrosis (IPF), and is partly responsible for associated excessive fibroblast proliferation and extracellular matrix deposi...
متن کاملSmad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction.
RATIONALE Cardiac fibroblasts are key effector cells in the pathogenesis of cardiac fibrosis. Transforming growth factor (TGF)-beta/Smad3 signaling is activated in the border zone of healing infarcts and induces fibrotic remodeling of the infarcted ventricle contributing to the development of diastolic dysfunction. OBJECTIVE The present study explores the mechanisms responsible for the fibrog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 293 4 شماره
صفحات -
تاریخ انتشار 2007